Quiz 2, ECED 3300

Instructor: Sergey A. Ponomarenko.
Place, Date and Time: B308; Tuesday, November 22, 2018, 3:05 to 4:05 pm.
Closed Books: Formula sheets are provided; no calculators are allowed.
Hint: Make sure to justify all your answers to get full credit.

Problem 1 (10 pts)

Given the current density,

$$
\mathbf{J}=\left\{\begin{array}{cc}
\left(\frac{J_{0} r}{R}\right) \mathbf{a}_{r}, & t \geq 0 \\
0, & t<0,
\end{array}\right.
$$

where J_{0} and R are given constants, find
a) the total charge stored inside a sphere of radius R, centered at the origin at any $t \geq 0$;
b) the total current flowing through a spherical shell, $R_{1} \leq r \leq R_{2}$, centered at the origin.

Problem 2 (5pts)

Determine the magnetic flux density in the region of space where the vector potential is given by

$$
\mathbf{A}=\frac{\sin \theta}{r^{2}} \mathbf{a}_{\phi}, \quad \mathrm{Wb} / \mathrm{m}
$$

Problem 3 (10pts)

A very long cylindrical conductor of radius a carries a current I along its axis. The current is uniformly distributed across the conductor.
a) Determine the magnetic field inside the conductor.
b) Find the magnetic field outside the conductor.

